Photovoltaic PV MODULE FOR PRODUCING ELECTRICITY RENEWABLE AND ALTERNATIVE ENERGY SOURCES

PHOTOVOLTAIC PANELS

Renewable Energy from Alternative Sources

SOLAR PANELS

For a Better Future

pv panels

Photovoltaic What is it?

 

What is a Photovoltaic PV MODULE? - RENEWABLE AND ALTERNATIVE ENERGY SOURCES - Photovoltaic panels solar cells.

Photovoltaic module

"Solar panel" redirects here. For the heat collectors, see Solar thermal collector.
A photovoltaic module is composed of individual PV cells. This crystalline-silicon module has an aluminium frame and glass on the front.

A PV module on the ISS.
A photovoltaic module or photovoltaic panel is a packaged interconnected assembly of photovoltaic cells, also known as solar cells. The photovoltaic module, known more commonly as the solar panel, is then used as a component in a larger photovoltaic system to offer electricity for commercial and residential applications.
Because a single photovoltaic module can only produce a limited amount of power, many installations contain several modules or panels and this is known as a photovoltaic array. A photovoltaic installation typically includes an array of photovoltaic modules or panels, an inverter, batteries and interconnection wiring.
Photovoltaic systems are used for either on- or off-grid applications, and for solar panels on spacecraft.


Theory and construction

PV cells in a panel.

Solar panels use light energy (photons) from the sun to generate electricity through the photovoltaic effect (this is the photo-electric effect). The majority of modules use wafer-based crystalline silicon cells or a thin-film cell based on cadmium telluride or silicon. Crystalline silicon, which is commonly used in the wafer form in photovoltaic (PV) modules, is derived from silicon, a commonly used semi-conductor.
In order to use the cells in practical applications, they must be:
connected electrically to one another and to the rest of the system
protected from mechanical damage during manufacture, transport, installation and use (in particular against hail impact, wind and snow loads). This is especially important for wafer-based silicon cells which are brittle.
protected from moisture, which corrodes metal contacts and interconnects, (and for thin-film cells the transparent conductive oxide layer) thus decreasing performance and lifetime.
Most modules are usually rigid, but there are some flexible modules available, based on thin-film cells.
Electrical connections are made in series to achieve a desired output voltage and/or in parallel to provide a desired amount of current source capability.
Diodes are included to avoid overheating of cells in case of partial shading. Since cell heating reduces the operating efficiency it is desirable to minimize the heating. Very few modules incorporate any design features to decrease temperature, however installers try to provide good ventilation behind the module.
New designs of module include concentrator modules in which the light is concentrated by an array of lenses or mirrors onto an array of small cells. This allows the use of cells with a very high-cost per unit area (such as gallium arsenide) in a cost-competitive way.
Depending on construction the photovoltaic can cover a range of frequencies of light and can produce electricity from them, but sometimes cannot cover the entire solar spectrum (specifically, ultraviolet, infrared and low or diffused light). Hence much of incident sunlight energy is wasted when used for solar panels, although they can give far higher efficiencies if illuminated with monochromatic light. Another design concept is to split the light into different wavelength ranges and direct the beams onto different cells tuned to the appropriate wavelength ranges. This is projected to raise efficiency by 50%. Also, the use of infrared photovoltaic cells can increase the efficiencies, producing power at night.
Sunlight conversion rates (module efficiencies) can vary from 5-18% in commercial production (solar panels), that can be lower than cell conversion.
A group of researchers at MIT has recently developed a process to improve the efficiency of luminescent solar concentrator (LSC) technology, which redirects light along a translucent material to PV-modules located along its edge. The researchers have suggested that efficiency may be improved by a factor of 10 over the old design in as little as three years (it has been estimated that this will provide a conversion rate of 30%). Three of the researchers involved have now started their own company, called Covalent Solar, to manufacture and sell their innovation in PV-modules.
The current market leader in efficient solar energy modules is SunPower, whose solar panels have a conversion ratio of 19.3%[4]. However, a whole range of other companies (HoloSun, Gamma Solar, NanoHorizons) are emerging which are also offering new innovations in photovoltaic modules, with a conversion ratio of around 18%. These new innovations include power generation on the front and back sides and increased outputs; however, most of these companies have not yet produced working systems from their design plans, and are mostly still actively improving the technology. As of August 26, 2009 a world record efficiency level of 41.6% has been reached.

Thin-film modules

Thin film, Third generation solar cell, and Low-cost photovoltaic cell
Third generation solar cells are advanced thin-film cells. They produce high-efficiency conversion at low cost.
Rigid thin-film modules
In rigid thin film modules, the cell and the module are manufactured in the same production line.
The cell is created directly on a glass substrate or superstrate, and the electrical connections are created in situ, a so called "monolithic integration". The substrate or superstrate is laminated with an encapsulant to a front or back sheet, usually another sheet of glass.
The main cell technologies in this category are CdTe, or a-Si, or a-Si+uc-Si tandem, or CIGS (or variant). Amorphous silicon has a sunlight conversion rate of 6-12%.
Flexible thin-film modules
Flexible thin film cells and modules are created on the same production line by depositing the photoactive layer and other necessary layers on a flexible substrate.
If the substrate is an insulator (e.g. polyester or polyimide film) then monolithic integration can be used.
If it is a conductor then another technique for electrical connection must be used.
The cells are assembled into modules by laminating them to a transparent colourless fluoropolymer on the front side (typically ETFE or FEP) and a polymer suitable for bonding to the final substrate on the other side. The only commercially available (in MW quantities) flexible module uses amorphous silicon triple junction (from Unisolar).
So-called inverted metamorphic (IMM) multijunction solar cells made on compound-semiconductor technology are just becoming commercialized in July 2008. The University of Michigan's solar car that won the North American Solar challenge in July 2008 used IMM thin-film flexible solar cells.
The requirements for residential and commercial are different in that the residential needs are simple and can be packaged so that as technology at the solar cell progress, the other base line equipment such as the battery, inverter and voltage sensing transfer switch still need to be compacted and unitized for residential use. Commercial use, depending on the size of the service will be limited in the photovoltaic cell arena, and more complex parabolic reflectors and solar concentrators are becoming the dominant technology.
The global flexible and thin-film photovoltaic (PV) market, despite caution in the overall PV industry, is expected to experience a CAGR of over 35% to 2019, surpassing 32GW according to a major new study by IntertechPira.
Module embedded electronics

Several companies have begun embedding electronics into PV modules. This enables performing Maximum Power Point Tracking (MPPT) for each module individually, and the measurement of performance data for monitoring and fault detection at module level. Some of these solutions make use of Power Optimizers, a DC to DC converter technology developed to maximize the power harvest from solar photovoltaic systems.
Module performance and lifetime

Module performance is generally rated under Standard Test Conditions (STC) : irradiance of 1,000 W/m², solar spectrum of AM 1.5 and module temperature at 25°C.
Electrical characteristics include nominal power (PMAX, measured in W), open circuit voltage (VOC), short circuit current (ISC, measured in Amperes), maximum power voltage (VMPP), maximum power current (IMPP) and module efficiency (%).
In kWp, kW is kilowatt and the p means “peak” as peak performance. The “p” however does not show the peak performance, but rather the maximum output according to STC
Solar panels must withstand heat, cold, rain and hail for many years. Many Crystalline silicon module manufacturers offer warranties that guarantee electrical production for 10 years at 90% of rated power output and 25 years at 80%
Price

Average pricing information divides in three pricing categories: those buying small quantities (modules of all sizes in the kilowatt range annually), mid-range buyers (typically up to 10MWp annually), and large quantity buyers (self explanatory—and with access to the lowest prices).Over the long term—and only in the long-term—there is clearly a systematic reduction in the price of cells and modules. For example in 1998 it was estimated that the quantity cost per watt was about $4.5, which was 33 times lower than the cost in 1970 of $150

From Wikipedia, the free encyclopedia

 

Ricerca personalizzata